网站页面已加载完成

由于您当前的浏览器版本过低,存在安全隐患。建议您尽快更新,以便获取更好的体验。推荐使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

当前位置: 首页 · 学术交流 · 正文

学术交流

【学术报告】研究生“灵犀学术殿堂”第549期之王建军教授报告会通知

发布时间:2020年06月29日 来源:党委学生工作部 点击数:

全校师生:

云顶集团定于2020年7月1日举办研究生灵犀学术殿堂——王建军报告会,现将有关事项通知如下:

1.报告会简介

报告人:王建军教授

时间:2020年7月1日(星期三) 15:00

地点:腾讯会议(会议号:274947281)

报告题目:Low-tubal-rank Tensor Analysis: Theory, Algorithms and Applications

内容简介:This talk will share our two recent results on low-tubal-rank tensor analysis. (1) LRTR: we establish a regularized tensor nuclear norm minimization (RTNNM) model for low-tubal-rank tensor recovery (LRTR). Then, we initiatively define a novel tensor restricted isometry property (t-RIP) based on tensor singular value decomposition (t-SVD). Besides, our theoretical results show that any third-order tensor X∈R^(n_1×n_2×n_3 ) whose tubal rank is at most can stably be recovered from its as few as measurements with a bounded noise constraint via the RTNNM model, if the linear map obeys t-RIP .(2) TRPCA: by incorporating prior information including the column and row space knowledge, we investigate the tensor robust principal component analysis (TRPCA) problem based on t-SVD. We establish sufficient conditions to ensure that under significantly weaker incoherence assumptions than tensor principal components pursuit method (TPCP), our proposed Modified-TPCP solution perfectly recovers the low-tubal-rank and the sparse components with high probability, provided that the available prior subspace information is accurate. In addition, we present an efficient algorithm by modifying the alternating direction method of multipliers (ADMM) to solve the Modified-TPCP program. Numerical experiments show that the Modified-TPCP based on prior subspace information does allow us to recover under weaker conditions than TPCP. The application of color video and face denoising task suggests the superiority of the proposed method over the existing state-of-the-art methods.

2.欢迎各学院师生前来听报告。报告会期间请关闭手机或将手机调至静音模式。

党委学生工作部

数学与统计学院

2020年6月24日

报告人简介

王建军,博士,西南大学教授(研究员),博士生导师,重庆市创新创业领军人才,巴渝学者特聘教授,重庆市学术带头人,美国数学评论评论员,重庆数学会理事,重庆市统计学重点学科学术带头人。主要研究方向为:高维数据建模、机器学习(深度学习)、数据挖掘、压缩感知、张量数据建模、函数逼近论等。在神经网络复杂性和高维数据稀疏建模等方面有一定的学术积累。主持并完成国家自然科学基金4项(其中面上项目2项,青年项目2项),教育部科学技术重点项目1项,重庆市自然科学基金1项,主研5项国家自然、社会科学基金;现主持国家自然科学基金面上项目一项,参与国家重点基础研究发展‘973’计划一项,多次出席国际、国内重要学术会议,并做特邀报告20余次。已在IEEE Transactions on Pattern Analysis and Machine Intelligence、Applied and Computational Harmonic Analysis , Inverse Problems,Neural Networks, Signal Processing, IEEE Signal Processing letters, Journal of Computational and Applied Mathematics, Neurocomputing, IET Signal Processing, IET Communication,中国科学(A,F辑),数学学报,计算机学报,电子学报,数学年刊等专业期刊发表90余篇学术论文。《中国科学》(A,F辑), IEEE Trans. Signal Process, image Process. Neural Networks and learning system及IEEE等系列刊物,Signal Processing,Neural Networks,Pattern Recognization,中国科学(A,F),计算机学报,电子学报,数学学报等知名期刊审稿人。2018年,以第一完成人申报的阶段性成果《复杂结构性高维数据稀疏建模的方法与算法应用》荣获重庆市自然科学三等奖。