报告题目:具有奇异邻接矩阵的图的构造
Topic:Construction of graphs with singular adjacency matrix
报告人:Johannes Siemons教授
Speaker:Prof.Johannes Siemons
邀请人:刘晓刚副教授
Host:Xiaogang Liu
报告时间:2019年4月19日(星期五)下午14:30-15:30
Time:14:30 pm-15:30 pm, April 19,2019
报告地点:长安校区理学院214会议室
Place:Conference Room 214, School of Natural and Applied Sciences
报告简介:令Γ表示不含自环与重边的有限图。如果图Γ的邻接矩阵是奇异的,那么就称Γ为奇异图。也就是说,Γ为奇异图当且仅当Γ的邻接谱含有0特征值。奇异图不但在物理、化学(例如,Hückel理论)领域有着非常重要的应用,而且对代数、组合、几何领域中的一些问题也有一定的影响。本报告首先介绍图的奇异性、解释它的重要性与渐进性,内容包括T. Tao、Van Vu、K.Costello与E. Szemerédi的研究工作。虽然对图谱理论知之甚详——可通过研究图的谱来确定图的奇异性,但是图的奇异性的一般性理论本身不太可能出现。具有特殊性质的图——点传递图的奇异性可以通过它的自同构群G的线性表示理论来进行研究,研究发现图的奇异性与G的特征标的零性有关。本报告的第二部分介绍图的谱与自同构群之间的联系,详细内容见参考文献[1]。
报告人简介:Johannes Siemons,东安格利亚大学(University of East Anglia)教授,1979年获英国伦敦帝国理工学院博士学位。Journal of Combinatorial Designs期刊编委(2006-至今),上海组合学国际会议学术委员会委员(2014-至今)。研究领域涉及代数、组合、设计、图论、有限几何、有限置换群及其应用等。在Journal of Algebra、Journal of Combinatorial Theory Ser A、Journal of Algebraic Combinatorics、Designs, Codes and Cryptography、European Journal of Combinatorics等期刊上发表学术论文70余篇,被引500余次。长期主讲代数(Algebra)、几何(Geometry)、群论(Group Theory)、图论(Graph Theory)、组合(Combinatorics)等课程,精于从概念本质启发、引导学生,教法独特,效果优异。
Speaker’s Biography:Johannes Siemons,Professor at the University of East Anglia. He got his PhD degree from Imperial College London, UK in 1979. He is the editor of Journal of Combinatorial Design(2006-present) and a member of the academic committee of Shanghai International Conference on Combinatorics (2014-present). His main research area is on algebra, combinatorics, design, graph theory, finite geometry, finite permutation group and its applications, etc. He has published more than 70 papers, which was cited more than 500 times, in high level journals includingJournal of Algebra,Journal of Combinatorial Theory Ser A,Journal of Algebraic Combinatorics,Designs, Codes and Cryptography,European Journal of Combinatorics, etc. He has taught Algebra,Geometry,Group Theory,Graph Theory,Combinatorics, etc. for many years. He is proficient in enlightening and guiding students from the essence of concept, with unique teachings methods and excellent results.