网站页面已加载完成

由于您当前的浏览器版本过低,存在安全隐患。建议您尽快更新,以便获取更好的体验。推荐使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

当前位置: 首页 · 学术交流 · 正文

学术交流

【学术讲座】美国乔治梅森大学Paulo C. G. Costa副教授讲座通知

发布时间:2017年07月10日 来源: 点击数:

报告题目:First Order Probabilistic Semantics in High-Level Information Fusion

人:Paulo C. G. Costa, Associate Professor

讲座时间:2017年7月12日 上午10:00

讲座地点:电子信息学院119会议室

人:张建东

承办学院:电子信息学院

人:张建东

联系电话:13630219356

报告简介:

Research on the subject of information fusion has focused primarily on lower-level data alignment (e.g. multi-sensor data fusion, syntactic protocols, distributed simulation, etc), on semantic mapping solutions (e.g. Semantic Web approaches, specialized semantic mapping solutions, etc), or other topics that do not fully address the fundamentals of high-level knowledge integration. As information flow in many real world applications grows larger and more complex, it becomes clear that advances in connectivity and computation alone are insufficient to address the problem of merging knowledge from heterogeneous sources. The sheer volume of data creates informational and cognitive bottlenecks. Incompatible formats and semantic mismatches necessitate tedious and time-consuming manual processing at various points in the decision cycle. As a result, massive amounts of potentially relevant data remain unexploited, narrow processing stovepipes continue to provide stop-gap solutions, and decision makers’ cognitive resources are too often focused on low-level manual data integration rather than high-level reasoning about the situations to be addressed.

This knowledge gap has been recognized and in spite of recent advances in HLIF research there is still a lack of a theoretical framework to enable HLIF applications. In this presentation, I introduce First-Order Probabilistic Semantics as a candidate for filling this gap, as it addresses the various challenges in merging complex data while properly accounting for the inherent uncertainty that comes from such data. I will present the key concepts of the framework and provide an update on the current status of its development, while showcasing a few examples of how the framework is being applied in diverse application areas.

报告人简介:

Paulo Cesar G. Costa博士是巴西空军资深飞行员,2008年退役,现任美国乔治梅森大学系统工程与运筹系副教授,乔治梅森大学C4I中心国际合作副主任,无线电与雷达工程实验室联合主任。他的研究兴趣包括电子战、决策支持系统、多传感器数据融合,概率表示和推理等。Costa教授开发了PR-OWL,是UnBBayes-MEBN的重要贡献者,Costa教授目前是美国NSF,美国国家工程院等审查委员会成员,IEEE高级会员,当选国际信息融合学会(2016-2018年任期)理事会成员,2015年国际信息融合大会主席,现任ISIF工作组副主席。